Enhancing Near-Field Radiative Heat Transfer with Si-based Metasurfaces.
نویسندگان
چکیده
We demonstrate in this work that the use of metasurfaces provides a viable strategy to largely tune and enhance near-field radiative heat transfer between extended structures. In particular, using a rigorous coupled wave analysis, we predict that Si-based metasurfaces featuring two-dimensional periodic arrays of holes can exhibit a room-temperature near-field radiative heat conductance much larger than any unstructured material to date. We show that this enhancement, which takes place in a broad range of separations, relies on the possibility to largely tune the properties of the surface plasmon polaritons that dominate the radiative heat transfer in the near-field regime.
منابع مشابه
Heat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method
The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...
متن کاملMetamaterial-based perfect absorbers for efficiently enhancing near field radiative heat transfer
The fascinating capability of manipulating light using metamaterials (MMs) has inspired a significant amount of studies of using MMs for energy related applications. In this work we investigate MM-based perfect absorbers for enhancing near field radiative heat transfer, which is described by the fluctuation dissipation theorem. MM structures designed at two wavelengths are analyzed, correspondi...
متن کاملStable states in the radiant heat transfer of the near field for two parallel slabs
In this paper, we study the dynamics of the radiative heat transfer of between two slabs. In these systems, depending on the type of slabs and the thermal interaction they have with their surroundings, they can have one or several stable states in the phase space. It can be seen that in these systems, quantities such as distance and thickness affect the states of these systems. We show that the...
متن کاملInclined Lorentzian force effect on tangent hyperbolic radiative slip flow imbedded carbon nanotubes: lie group analysis
The present paper focuses on numerical study for an inclined magneto-hydrodynamic effect on free convection flow of a tangent hyperbolic nanofluid embedded with Carbon nanotubes (CNTs) over a stretching surface taking velocity and thermal slip into account. Two types of nanoparticles are considered for the study; they are single and multi-walled nanotubes. The presentation of single-parameter g...
متن کاملOptimization of Heat Transfer Enhancement of a Domestic Gas Burner Based on Pareto Genetic Algorithm: Experimental and Numerical Approach
The present study attempts to improve heat transfer efficiency of a domestic gas burner by enhancing heat transfer from flue gases. Heat transfer can be augmented using the obstacles that are inserted into the flow field near the heated wall of the domestic gas burner. First, to achive the maximum efficiency, the insert geometry is optimized by the multi-objective genetic algorithm so that heat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 118 20 شماره
صفحات -
تاریخ انتشار 2017